# Extended normal coordinate analysis of an (arene) osmium(II) complex with the inclusion of the ring ligand * 

T. Polzer and W. Kiefer<br>Institut für Physikalische Chemie der Universität Würzburg, Marcusstr. 9-11, D-97070 Würzburg (Germany)<br>(Received September 8, 1993)


#### Abstract

Results are presented of an optimized valence force field of the dihydridoosmium(II) complex [(mes)OsH2 $\mathbf{( C O}$ )] (mes = $\left.\mathrm{C}_{6} \mathrm{H}_{3}\left(\mathrm{CH}_{3}\right)_{3}-2,4,6\right)$ in which the ring was treated as a point mass. The Raman and IR spectra of metal-coordinated mesitylene are given and the results of normal coordinate analysis of the arene described. From the results, a modified general valence force field including the whole ring ligand has been calculated. The results are discussed, and compared with those of the model with point mass approximation.


Key words: Osmium; Arene; Normal coordinate analysis; Force field; Raman spectroscopy; Infrared spectroscopy

## 1. Introduction

During our investigation of $\mathrm{C}-\mathrm{H}$ activation by osmium(II) complexes we have previously studied the vibrational spectroscopy of relevant compounds [1,2]. Information about force constants and bond properties, based on vibrational analysis of the compound, is of great importance for further investigations concerning the selective excitation of certain modes in order to favour $\mathrm{C}-\mathrm{H}$ activation products. Therefore, we improved the normal coordinate analysis (NCA) presented in ref. 2 by making use of a refined set of structure parameters, and particularly by the inclusion of the ring ligand instead of a point mass approximation (PMA). The PMA is a method often used in vibrational spectroscopy of organometallic compounds, especially if ligands are considered too bulky for calculations or if the bands of only a small part of a molecule, e.g. the modes of the carbonyl groups [3], are known. On the other hand, there are reports of NCA calculations of a complete half sandwich complex [6-8] (although this was a very symmetric one and therefore the NCA was a simplified) where the authors focused

[^0]on the changes on going from the free and the coordinated ligand. A comparison between the PMA and a complete model calculation has not been reported until now. In view of this and the fact that we now have novel geometry data for the osmium compound, we have undertaken both the point mass approximation and the inclusion of the ring ligand in the NCA of [ $(\mathrm{mes}) \mathrm{OsH}_{2}(\mathrm{CO}]$ to derive information on the difference between the two models. A critical comparison between the results for the chosen models is given.

## 2. Calculations

### 2.1. Structure parameters

In the recent NCA of [(mes)OsH $\left.{ }_{2}(\mathrm{CO})\right][2]$ we had to use geometrical data adapted from similar species, because no accurate structure parameters from X-ray diffraction studies are available. In the present paper, we make use of an energy optimized geometry [9] based on gaussian 90 calculations [10]. Bond lengths and bond angles used for both models are compiled in Table 1. In comparison to the data used in ref. 2, the Os-C bond length and the distance between the centre of the ring ligand and the metal atom are increased by $12 \%$ and $15 \%$, respectively. The bond angles remain nearly unchanged, except that the bond angle $\mathrm{H}-\mathrm{Os}-\mathrm{H}$ is decreased by $11 \%$. Owing to coordination of the ring
the mean $\mathrm{C}-\mathrm{C}$ distance within the ring is increased by $10 \%$ compared with that in free mesitylene. The symmetry is $C_{s}$ for the PMA and the complete model.

### 2.2. Vibrational force field

The method of performing the NCA of the complete molecule is similiar to that used for more highly symmetrical or more simple molecules $[8,11]$. A novel NCA was carried out by treating the ring ligand as a point mass; and then, the force field of free mesitylene [12] was refined using the geometry and the vibrational frequencies of the coordinated ring ligand. Finally, the two force fields were combined and the resulting force field was additionally modified by inclusion of interaction force constants and refinements of the force constants. A direct merge is clearly not possible, because the "one" atom representing the ring ligand in the PMA had to be replaced by the six C -atoms of the mesitylene molecule. This replacement demands a new set-up of the structure of the part of the force field of the $\mathrm{H}_{2} \mathrm{Os}(\mathrm{CO})$ unit and fewer interaction force constants with respect to the internal coordinates involving the $\mathrm{Os}-\mathrm{H}$ bond had to be used. The force fields were set up in internal coordinates without conversion into symmetry coordinates because the symmetry of the moleculc is very low, and furthermore we use these force fields as a base for further calculations of $\mathrm{Os}^{\mathrm{II}}$ complexes. The programs used for the calculations were the same as those described in ref. 2.

In an initial step, we had to repeat the calculations on the point mass approximation, where the mass of the mesitylene ligand is centred in a point mass at the centre of the ring. The resulting force field of ref. 2 could not be adopted directly because the changes in the structural data lead to large errors in the calcuiated positions of the normal modes which cannot be removed by simple refinement of the force constants. It has been shown [13] that even small changes in the bond length are responsible for such large deviations of the calculated band positions, whereas changes in the

TABLE 1. Bond lengths $(\AA)$ and bond angles $\left({ }^{\circ}\right)$ of $\left[(\right.$ mes $\left.) \mathrm{OsH}_{2}(\mathrm{CO})\right]$ used as input data for the two models discussed in this paper; $\mathbf{M}=$ centre of mesitylene; $\mathbf{R}=\mathrm{CH}_{3}$ group as a point mass

| Bond angles |  |  |  |
| :--- | ---: | :--- | ---: |
| $\mathrm{H}-\mathrm{Os}-\mathrm{H}$ | 80.20 | M-Os-C |  |
| $\mathrm{M}-\mathrm{Os}-\mathrm{H}$ | 135.10 | Os-M-C | 53.87 |
| $\mathrm{M}-\mathrm{Os}-\mathrm{C}_{\mathrm{CO}}$ | 142.50 | Os-C-O | 90.00 |
|  |  |  | 179.00 |
| Bond lengths |  |  |  |
| Os-H | 1.736 | $\mathrm{C}_{\text {ring }}-\mathrm{C}_{\text {ring }}$ | 1.416 |
| Os-C | 2.060 | $\mathrm{C}_{\text {ring }}-\mathrm{H}$ | 1.068 |
| $\mathrm{C}-\mathrm{O}$ | 1.135 | C ring -R | 1.505 |
| Os-M | 1.939 | $\mathrm{C}_{\text {ring }}-\mathrm{Os}$ | 2.400 |

a)

b)


Fig. 1. Internal coordinates of the point mass model of (mes) $\mathrm{OsH}_{2}(\mathrm{CO}$ ), (a) stretches, (b) bendings.
bond angles within $10 \%$ result in only small errors. Thus, the force field of the molecule had to be modified because of the changed geometry, and some more interaction force constants had to be added with respect to the recent field. The defined internal coordinates are shown in Fig. 1, and the force constants are compiled in Table 2. Observed and calculated frequencies, together with the assignments and potential energy distribution, are listed in Table 3.

The next step was to determine the vibrational frequencies of the coordinated mesitylene and to set up its force field. The vibrational spectroscopy of free mesitylene has frequently been investigated [12,14-17] but only a few items of vibrational data for the coordinated arene have been reported up to now [18,19]; moreover, only half-sandwich complexes with metais of Group VI were considered in those papers. We have carried out a vibrational assignment of the coordinated mesitylene based on our Raman and IR measurements and on the current literature data. Figure 2 shows the complete vibrational spectra of [(mes) $\mathrm{OsH}_{2}(\mathrm{CO}]$ (including the CH -stretching region) with the assigned modes of the ring ligand. Part of this spectrum (without the CH -stretching region) has already been presented in ref. 2. The vibrational frequencies and assignments of free as well as coordinated mesitylene are listed in Table 4. We were also able to assign the modes of the methyl groups (see Table 5). If the methyl groups of the ring and the rest of the metal fragment are considered as point masses, the symmetry of the ring is lowered from $D_{3 h}$ of the free molecule to $C_{3 k}$. Therefore, the assignments are related to the local $C_{30}$ symmetry. The $\mathrm{A}_{2}$-modes which are inactive in both
the Raman and the IR spectrum of the free ligand become active as a result of the coordination. However, they remain of very weak intensity and their band positions remain uncertain.

TABLE 2. Internal coordinates and calculated force constants of [(mes) $\left.\mathrm{OsH}_{2}(\mathrm{CO})\right]$ with the point mass approximation used in this paper (for definitions see Fig. 1)

| Force constant type | Definition | Value ${ }^{\text {a }}$ |
| :---: | :---: | :---: |
| Diagonal |  |  |
| Os-H stretch | $\mathrm{s}_{1}$ | 2.517 |
| Os--C stretch | $\mathrm{s}_{2}$ | 4.826 |
| $\mathrm{C}-\mathrm{O}$ stretch | $\mathrm{s}_{3}$ | 13.314 |
| Os-M stretch | $\mathrm{s}_{4}$ | 4.979 |
| H-Os-H bend | $\alpha$ | 0.320 |
| $\mathrm{M}-\mathrm{Os}-\mathrm{H}$ bend | $\beta$ | 0.369 |
| $\mathrm{M}-\mathrm{Os}-\mathrm{C}$ bend | $\gamma$ | 1.014 |
| $\mathrm{C}-\mathrm{Os}-\mathrm{H}$ bend | $\delta$ | 0.814 |
| Os-C-O bend | $\epsilon$ | 1.480 |
| Stretch / stretch interaction |  |  |
| OsH stretch/OsH stretch | $\mathrm{s}_{1} \mathrm{~s}_{1}$ | 0.002 |
| OsH stretch/CO stretch | $\mathrm{s}_{1} \mathrm{~s}_{3}$ | 0.036 |
| OsH stretch/OsM stretch | $\mathrm{s}_{1} \mathrm{~s}_{4}$ | 0.009 |
| OsC stretch/CO stretch | $\mathrm{s}_{2} \mathrm{~s}_{3}$ | -0.077 |
| OsC stretch/OsM stretch | $\mathrm{s}_{2} \mathrm{~s}_{4}$ | -0.195 |
| CO stretch/OsM stretch | $\mathrm{s}_{3} \mathrm{~s}_{4}$ | 0.105 |
| Stretch / bend interaction |  |  |
| OsH stretch/HOsH bend | $\mathrm{s}_{1} \alpha$ | -0.008 |
| OsH stretch/MOsC bend | $\mathrm{s}_{1} \gamma$ | 0.020 |
| OsH stretch/OsCO bend | $\mathrm{s}_{1} \epsilon$ | -0.024 |
| Os stretch/HOsH bend | $\mathrm{s}_{2} \alpha$ | 0.047 |
| OsC stretch/MOsH bend | $\mathrm{s}_{2} \beta$ | 0.032 |
| OsC stretch/MOsC bend | $\mathrm{s}_{2} \gamma$ | -0.044 |
| OsC stretch/HOsC bend | $\mathrm{s}_{2} \delta$ | 0.179 |
| OsC stretch/OscO bend | $\mathrm{s}_{2} \epsilon$ | 0.172 |
| CO stretch/MOsC bend | $\mathrm{s}_{3} \gamma$ | -0.079 |
| OsM stretch/HOsH bend | $\mathrm{s}_{4} \alpha$ | 0.015 |
| OsM stretch/MOsH bend | $\mathrm{s}_{4} \beta$ | 0.179 |
| OsM stretch/MOsC bend | $\mathrm{s}_{4} \gamma$ | 0.063 |
| OsM stretch/HOsC bend | $\mathrm{s}_{4} \delta$ | -0.024 |
| OsM stretch/OSCO bend | $\mathrm{S}_{4}{ }^{6}$ | -0.043 |
| Bend / bend interaction |  |  |
| HOsH bend/MOsH bend | $\alpha \beta$ | 0.113 |
| HOsH bend/MOsC bend | $\alpha \gamma$ | 0.007 |
| HOsH bend/ HOsC bend | $\boldsymbol{\alpha} \boldsymbol{\delta}$ | -0.036 |
| HOsH bend/OsCO bend | $\boldsymbol{\alpha \epsilon}$ | 0.074 |
| $\mathrm{H}_{1} \mathrm{OsM}$ bend/ $\mathrm{H}_{2} \mathrm{OsM}$ bend | $\beta \beta$ | 0.228 |
| HOsM bend/MOsC bend | $\beta \gamma$ | 0.068 |
| HOsM bend/HOsC bend | $\beta_{1} \delta_{1} / \beta_{2} \delta_{2}$ | 0.120 |
| HOsM bend/HOsC bend | $\beta_{1} \delta_{2} / \beta_{2} \delta_{1}$ | -0.068 |
| HOsM bend/OsCO bend | $\boldsymbol{\beta} \boldsymbol{\epsilon}$ | 0.021 |
| MOsC bend/HOsC bend | ${ }^{\gamma} \boldsymbol{\delta}$ | 0.022 |
| MOsC bend/OscO bend | $\boldsymbol{\gamma \epsilon}$ | 0.156 |
| $\mathrm{H}_{1} \mathrm{OsC}$ bend $/ \mathrm{H}_{2} \mathrm{Os} \mathrm{C}$ bend | $\delta \delta$ | -0.299 |

[^1]TABLE 3. Observed and calculated wavenumbers for [(mes) $\mathrm{OsH}_{2}$ (CO)] within the point mass approximation

| Observed <br> $\left(\mathrm{cm}^{-1}\right)^{\mathrm{a}}$ | Calculated <br> $\left(\mathrm{cm}^{-1}\right)$ | Assignment | PED (\%) $^{\mathrm{b}}$ |
| :--- | :--- | :--- | :--- |
| 2066 | 2066 | $\nu_{\mathbf{s}}(\mathrm{Os}-\mathrm{H})$ | $100 \mathrm{~s}_{1}$ |
| 2062 | 2062 | $\nu_{\mathrm{a}}(\mathrm{Os}-\mathrm{H})$ | $100 \mathrm{~s}_{1}$ |
| 1936 | 1936 | $\nu(\mathrm{C}-\mathrm{O})$ | $87 \mathrm{~s}_{3}+13 \mathrm{~s}_{2}$ |
| 810 | 810 | $\delta(\mathrm{C}-\mathrm{Os}-\mathrm{H})$ | $50 \epsilon+37 \delta+8 \beta$ |
| 733 | 733 | $\tau(\mathrm{H}-\mathrm{Os}-\mathrm{H})$ | $79 \delta+21 \beta$ |
| 605 | 605 | $\omega(\mathrm{H}-\mathrm{Os}-\mathrm{H})$ | $42 \delta+33 \epsilon+21 \beta$ |
| 558 | 558 | $\delta(\mathrm{H}-\mathrm{Os}-\mathrm{H})$ | $86 \alpha+9 \beta$ |
| 546 | 546 | $\nu(\mathrm{Os}-\mathrm{C})$ | $79 \mathrm{~s}_{2}+12 \mathrm{~s}_{3}$ |
| 329 | 329 | $\nu(\mathrm{Os}-\mathrm{M})$ | $95 \mathrm{~s}_{4}+4 \mathrm{~s}_{2}$ |
| 166 | 166 | $\delta(\mathrm{M}-\mathrm{Os}-\mathrm{H})$ | $98 \beta$ |
| 137 | 137 | $\delta(\mathrm{M}-\mathrm{Os}-\mathrm{C})$ | $78 \gamma+11 \delta+6 \beta$ |

${ }^{\mathrm{a}}$ Ref. 2. ${ }^{\mathrm{b}}$ Potential energy distribution (PED) values below $5 \%$ are omitted.

The last step in our theoretical treatment was the calculation for the complete molecule. We used the previously investigated force field for free mesitylene [12] and refined it on the basis of the changed band positions. The methyl groups do not couple to any significant extent with the ring, and they are considered as point masses with $m=15$ at the positions of the C -atoms. A limitation of the model is the fact that we had to use fixed positions of the atoms despite the known rotation of the ring around the $z$-axis of the molecule at room temperature. Because of the overall $C_{s}$ symmetry of the molecule, the atom groups of the ring ligand are no longer undistinguishable (i.e. viewed from the carbonyl group). We took this into account by using separate off-diagonal constants that describe the different interactions of the various ligand atoms, whereas the part of the force field describing the ring ligand was kept symmetrical. The defined internal coordinates are shown in Fig. 3, and they are also given together with the calculated force constants in Table 6. The observed and calculated frequencies of [(mes)$\left.\mathrm{OsH}_{2}(\mathrm{CO})\right]$ together with assignments and PED are finally compiled in Table 7.

## 3. Discussion

As can be seen in Table 3, there is excellent agreement between the calculated and observed frequencies for the PMA model. The five stretch and six deformation modes were calculated with an average error of $0.013 \%$ by use of a force field with 12 diagonal elements and 51 off-diagonal elements represented by 44 force constants. The vibrational assignment made in ref. 2 is unchanged, and the resulting PED does not differ very much from that reported there. When the ring ligand is included instead of the PMA, the force
field for the complete molecule can be calculated under the conditions mentioned above with a set of 65 diagonal elements and 462 off-diagonal elements represented by a total of 100 force constants. The calculated frequencies agree very well with the measured values with deviations of $<4 \mathrm{~cm}^{-1}$.

The in-plane modes of the ring are hardly coupled with other modes of the molecule. This is easily explained by the fact that the displacement vectors of the in-plane coordinates are almost perpendicular to the $\mathrm{Os}-\mathrm{C}_{\text {ring }}$ bond axis. Furthermore, the large mass of the osmium atom screens them from the residual ligands. Most of the in-plane band positions are only slightly changed except for the $\mathrm{C}-\mathrm{H}$ stretching modes and the
two $\mathrm{C}-\mathrm{C}$ stretching modes of E type symmetry in the region from $1400 \mathrm{~cm}^{-1}$ to $1600 \mathrm{~cm}^{-1}$. It was recently reported $[18,20,21]$ that the $\mathrm{C}-\mathrm{H}$ stretching modes of an aromatic ring could be shifted to higher wavenumbers upon coordination, and thus the corresponding force constant $s_{2}$ is enlarged slightly. One E type mode is raised from $1383 \mathrm{~cm}^{-1}$ to $1455 \mathrm{~cm}^{-1}$ and the other is lowered from $1610 \mathrm{~cm}^{-1}$ to $1522 \mathrm{~cm}^{-1}$. The calculation shows that, compared with the free mesitylene, the increase in the $\mathrm{C}-\mathrm{C}$ stretch force constant $\mathrm{s}_{6}$ and a decrease in the interaction force constant $\eta \eta$ are mainly responsible for the shift.

In the case of the out-of-plane modes, the situation is completely different. The mentioned displacements


Fig. 2. Raman and IR spectra of [(mes) $\left.\mathrm{OsH}_{2}(\mathrm{CO})\right]$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; ${ }^{*}$ marks the position of solvens compensation. For experimental details see ref. 2.

TABLE 4. Assignments and band positions of the normal modes of free mesitylene and coordinated at [(mes)OsH $\mathbf{H}_{2}(\mathrm{CO})$ ] with respect to local symmetry of the ring

| Free mesitylene $\left(D_{3 h}\right)^{\text {a }}$ |  |  | Coordinated mesitylene ( $C_{3 \nu}$ ) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Symmetry | Band | Position ( $\mathrm{cm}^{-1}$ ) | Symmetry | Band | Position ( $\mathrm{cm}^{-1}$ ) |
| $\mathrm{E}_{1}^{\prime}$ | $\nu_{\text {as }}(\mathrm{CH})$ | 3027 | $\mathrm{A}_{1}$ | $\nu_{s}(\mathrm{C}-\mathrm{H})$ | 3078 |
| $\mathbf{A}_{1}^{\prime}$ | $\nu_{s}(\mathrm{CH})$ | 3006 | E | $\nu_{\text {as }}(\mathrm{C}-\mathrm{H})$ | 3034 |
| $\mathrm{E}_{1}^{\prime}$ | $\nu_{\mathrm{as}}(\mathrm{C}-\mathrm{C})$ | 1610 | E | $\nu_{\mathrm{as}}(\mathrm{C}-\mathrm{C})$ | 1522 |
| E | $\nu_{\mathrm{as}}(\mathrm{C}-\mathrm{C})$ | 1382 | E | $\nu_{\mathrm{ns}}(\mathrm{C}-\mathrm{C})$ | 1455 |
| $\mathrm{A}^{\prime}$ | $\delta(\mathrm{C}-\mathrm{H})_{\text {ip }}$ | $(1290-1460)^{\text {b }}$ | $\mathrm{A}_{2}$ | $\delta(\mathrm{C}-\mathrm{H})_{\text {ip }}$ | $1451{ }^{\text {d }}$ |
| $\mathrm{A}_{1}^{\prime}$ | $\nu_{s}(\mathrm{C}-\mathrm{Me})$ | 1301 | $\mathbf{A}_{1}$ | $\nu_{s}(\mathrm{C}-\mathrm{Me})$ | 1299 |
| $\mathbf{A}_{2}^{\prime}$ | $\delta(\mathrm{C}-\mathrm{C})_{\text {ip }}$ | $(1200-1250)^{\text {b }}$ | $\mathrm{A}_{2}$ | $\delta(\mathrm{C}-\mathrm{C})_{\text {ip }}$ | 1222 d |
| $\mathrm{E}^{\prime}$ | $\delta(\mathrm{C}-\mathrm{H})_{\text {ip }}$ | 1166 | E | $\delta(\mathrm{C}-\mathrm{H})_{\mathrm{ip}}$ | 1152 |
| $\mathrm{A}_{1}^{\prime}$ | $\nu_{s}(\mathrm{C}-\mathrm{C})$ | 998 | $\mathrm{A}_{1}$ | $\nu_{s}(\mathrm{C}-\mathrm{C})$ | 989 |
| $\mathrm{E}^{\prime}$ | $\nu_{\text {as }}(\mathrm{C}-\mathrm{Me})$ | 929 | E | $\nu_{\text {as }}(\mathrm{C}-\mathrm{Me})$ | 913 |
| $\mathrm{E}^{\prime \prime}$ | $\delta(\mathrm{C}-\mathrm{H})_{\text {oop }}$ | 881 | E | $\delta(\mathrm{C}-\mathrm{H})_{\text {oop }}$ | 878 |
| $\mathrm{A}_{2}^{\prime \prime}$ | $\delta(\mathrm{C}-\mathrm{H})_{\text {vop }}$ | 837 | $\mathrm{A}_{1}$ | $\delta(\mathrm{C}-\mathrm{H})_{\text {vop }}$ | 826 |
| $\mathrm{A}^{\prime \prime}$ | $\delta(\mathrm{C}-\mathrm{C})_{\text {oop }}$ | 688 | $\mathrm{A}_{1}$ | $\delta(\mathrm{C}-\mathrm{C})_{\text {oop }}$ | 669 |
| $\mathrm{A}_{1}^{\prime}$ | $\nu_{s}(\mathrm{C}-\mathrm{Me})$ | 578 | $\mathrm{A}_{1}$ | $\nu_{s}(\mathrm{C}-\mathrm{Me})$ | 570 |
| $\mathrm{E}^{\prime \prime}$ | $\delta(\mathrm{C}-\mathrm{C})_{\text {оор }}$ | $(430-540)^{\text {c }}$ | E | $\delta(\mathrm{C}-\mathrm{C})_{\text {oop }}$ | $565{ }^{\text {d }}$ |
| $\mathrm{E}^{\prime}$ | $\delta(\mathrm{C}-\mathrm{C})_{\text {ip }}$ | 515 | E | $\delta(\mathrm{C}-\mathrm{C})_{\text {ip }}$ | 517 |
| $\mathrm{A}_{2}^{\prime}$ | $\delta(\mathrm{C}-\mathrm{Me})_{\text {ip }}$ | $(300-500)^{\text {b }}$ | $\mathbf{A}_{2}$ | $\delta(\mathrm{C}-\mathrm{Me})_{\text {ip }}$ | $324{ }^{\text {d }}$ |
| $\mathrm{E}^{\prime}$ | $\delta(\mathrm{C}-\mathrm{Me})_{\text {ip }}$ | 275 | E | $\delta(\mathrm{C}-\mathrm{Me})_{\mathrm{ip}}$ | 275 |
| E" | $\delta(\mathrm{C}-\mathrm{Me})_{\text {oop }}$ | 225 | E | $\delta(\mathrm{C}-\mathrm{Me})_{\text {oop }}$ | 225 |
| $\mathrm{A}_{2}^{\prime \prime}$ | $\delta(\mathrm{C}-\mathrm{Me})_{\text {oop }}$ | 183 | $\mathrm{A}_{1}$ | $\delta(\mathrm{C}-\mathrm{Me})_{\text {oop }}$ | 173 |

${ }^{a}$ Refs. 12, 14-17. ${ }^{\mathrm{b}}$ Not active in both Raman and infrared spectroscopy. ${ }^{\mathrm{c}}$ Position is uncertain due to very low intensity. ${ }^{\mathrm{d}}$ Calculated (see Table 5).
coincide with those of the $\mathrm{Os}-\mathrm{C}_{\text {ring }}$ coordinates and strong coupling occurs. The two different modes with E symmetry are caused by the ligands, which produce a different environment for each mode. Thus, the E type bands in particular are split in the calculation. The reported values as given in Table 6 are the average of the two split modes.

The question to be answered was whether treatment of the ring as a point mass is a useful approximation. We obtained a force constant for the Os- $\mathrm{C}_{\text {ring }}$ stretch coordinate of $1.211 \mathrm{mdyn} / \AA$. The value of the force constant of the $\mathrm{Os}-\mathrm{M}$ stretch coordinated was calculated to be $4.979 \mathrm{mdyn} / \AA$. Simply related to one single Os- $\mathrm{C}_{\text {ring }}$ bond this would be $0.830 \mathrm{mdyn} / \AA$, which means a difference of about $30 \%$ compared with 1.211 mdyn/A. This is similar to the other internal coordinates involving the ring ligand, in which large changes of their force constants occur. On the other hand,

TABLE 5. Band positions of the modes of the methyl groups of the coordinated mesitylene of [(mes) $\mathrm{OsH}_{2}(\mathrm{CO})$ ]

| Raman $\left(\mathrm{cm}^{-1}\right)$ | IR $\left(\mathrm{cm}^{-1}\right)$ | Assignment |
| :--- | :--- | :--- |
| $2919 \mathrm{vs}, \mathrm{p}$ | 2920 w | $\nu_{\mathrm{s}}\left(\mathrm{CH}_{3}\right)$ |
| 2872 m | 2875 vw | $\nu_{\mathrm{as}}\left(\mathrm{CH}_{3}\right)$ |
| 1442 w, sh | 1440 w | $\delta_{\mathrm{as}}\left(\mathrm{CH}_{3}\right)$ |
| 1385 m | 1383 m | $\delta_{\mathrm{s}}\left(\mathrm{CH}_{3}\right)$ |
| 1036 w | 1040 s | $\rho\left(\mathrm{CH}_{3}\right)$ |


a)

c)

b)

d)

Fig. 3. Internal coordinates for [(mes) $\left.\mathrm{OsH}_{2}(\mathrm{CO})\right]$, (a) stretches for the $\mathrm{H}_{2} \mathrm{Os}(\mathrm{CO})$ unit, (b) bendings for the $\mathrm{H}_{2} \mathrm{Os}(\mathrm{CO})$ unit, (c) stretches and in-plane bendings of the ring, (d) out-of-plane bendings and torsions of the ring.

TABLE 6. Internal coordinates and force constants of [(mes)$\mathrm{OsH}_{2}(\mathrm{CO})$ ] without point mass approximation (PED) (for definitions see Fig. 3)

| Force constant type | Definition | Value |
| :---: | :---: | :---: |
| Diagonal |  |  |
| $\mathrm{Os}-\mathrm{H}$ stretch | $\mathrm{s}_{1}$ | 2.497 |
| $\mathrm{Os}-\mathrm{C}_{\mathrm{co}}$ stretch | $\mathrm{s}_{2}$ | 4.792 |
| C-O stretch | $\mathrm{s}_{3}$ | 13.419 |
| Os- $\mathrm{C}_{\text {ring/ } / \mathrm{H}}$ stretch | $\mathrm{s}_{4}$ | 1.211 |
| Os- $\mathrm{C}_{\text {ring/ } / \mathrm{Me}}$ stretch | $\mathrm{s}_{5}$ | 1.211 |
| C-C stretch | $\mathrm{s}_{6}$ | 6.777 |
| C-H stretch | $\mathrm{s}_{7}$ | 4.028 |
| C-Me stretch | $\mathrm{s}_{8}$ | 4.530 |
| $\mathrm{H}-\mathrm{Os}-\mathrm{H}$ hend | $\alpha$ | 0.285 |
| $\mathrm{C}_{\text {ring }}$-Os-H bend | $\beta$ | 0.185 |
| $\mathrm{C}_{\text {ring }}-\mathrm{Os}-\mathrm{C}_{\mathrm{co}}$ bend | $\gamma$ | 2.013 |
| $\mathrm{C}_{\mathrm{CO}}-\mathrm{Os}-\mathrm{H}$ bend | $\delta$ | 0.810 |
| $\mathrm{Os}-\mathrm{C}-\mathrm{O}$ bend | $\epsilon$ | 1.217 |
| $\mathrm{C}-\mathrm{C}_{\mathrm{H}}-\mathrm{C}$ bend i.p. | $\phi$ | 0.677 |
| $\mathrm{C}-\mathrm{C}_{\mathrm{Me}}-\mathrm{C}$ bend i.p. | $\chi$ | 1.742 |
| $\mathrm{C}-\mathrm{C}-\mathrm{H}$ i.p. | $\eta$ | 0.777 |
| C-C-Me i.p. | $\varphi$ | 1.408 |
| $\mathrm{C}-\mathrm{H}$ bend o.o.p. | $\kappa$ | 0.085 |
| $\mathrm{C}-\mathrm{Me}$ bend o.o.p. | $\lambda$ | 0.374 |
| $\mathrm{C}-\mathrm{C}$ torsion | $\tau$ | 0.415 |
| $\mathrm{H}-\mathrm{C}-\mathrm{Os}$ bend | $\mu$ | 0.035 |
| $\mathrm{Me}-\mathrm{C}-\mathrm{Os}$ bend | $\pi$ | 0.168 |
| Stretch / stretch interaction |  |  |
| Os-H stretch/Os-H stretch | $\mathrm{s}_{1} \mathrm{~s}_{1}$ | 0.002 |
| $\mathrm{Os}-\mathrm{C}_{\mathrm{CO}}$ stretch/C-O stretch | $\mathrm{s}_{2} \mathrm{~s}_{3}$ | -0.001 |
| Os- $\mathrm{C}_{\text {ring/H }}$ stretch/Os- $\mathrm{C}_{\text {ring/H }}$ stretch | $\mathrm{s}_{4} \mathrm{~s}_{4}$ | -0.184 |
| Os- $\mathrm{C}_{\text {ring/me }}$ stretch/Os $\mathrm{C}_{\text {ring/me }}$ stretch | $\mathrm{s}_{5} \mathrm{~s}_{5}$ | -0.184 |
| $\mathrm{Os}-\mathrm{C}_{\text {ring/H }}$ stretch/C-O stretch | $\mathrm{s}_{4} \mathrm{~S}_{6}$ | -0.050 |
| $\mathrm{Os}-\mathrm{C}_{\text {ring/ } / \mathrm{Me}}$ stretch/ $\mathrm{C}-\mathrm{O}$ stretch | $5_{5}^{5} 5_{6}$ | -0.050 |
| Os- $\mathrm{C}_{\text {ring/H }}$ stretch/C-H stretch | $\mathrm{s}_{4} \mathrm{~s}_{7}$ | -0.009 |
| Os-C $\mathrm{Cring} / \mathrm{Me}^{\text {stretch/C-Me stretch (adjacent) }}$ | $\mathrm{s}_{5} \mathrm{~s}_{8}^{\prime}$ | 0.008 |
| Os-C ${ }_{\text {ring/Me }}$ stretch/C-Me stretch (1 adjacent) | $\mathrm{s}_{5} \mathrm{~s}_{8}^{\prime \prime}$ | -0.015 |
| C-C stretch/C-C stretch (adjacent) | $\mathrm{s}_{6} \mathrm{~s}_{6}^{\prime}$ | 1.788 |
| $\mathrm{C}-\mathrm{C}$ stretch/ $\mathrm{C}-\mathrm{C}$ stretch (1 adjacent) | $\mathrm{s}_{6} \mathrm{~s}_{6}^{\prime \prime}$ | 0.639 |
| C-C stretch/C-H stretch | $\mathrm{s}_{6} \mathrm{~s}_{7}$ | -1.986 |
| C-C stretch/C-Me stretch | $\mathrm{s}_{6} \mathrm{~s}_{8}$ | 0.127 |
| C-H stretch/ $\mathrm{C}-\mathrm{H}$ stretch | $\mathrm{s}_{7} \mathrm{~s}_{7}$ | 0.160 |
| C-H stretch/C-Me stretch | $\mathrm{s}_{7} \mathrm{~s}_{8}$ | 0.7047 |
| C-Me stretch/C-Me stretch | $\mathrm{S}_{8} \mathrm{~s}_{8}$ | $-0.333$ |
| Stretch / bend interaction |  |  |
| Os- $\mathrm{C}_{\mathrm{CO}}$ stretch/ $\mathrm{C}_{\mathrm{CO}}-\mathrm{Os}-\mathrm{H}$ bend | $\mathrm{s}_{2} \delta$ | 0.047 |
| $\mathrm{Os}-\mathrm{C}_{\mathrm{CO}}$ stretch/ $\mathrm{H}-\mathrm{C}-\mathrm{Os}$ bend | $\mathrm{s}_{2} \mu$ | 0.032 |
| Os- $\mathrm{C}_{\mathrm{CO}}$ stretch/ $\mathrm{Me}-\mathrm{C}-\mathrm{Os}$ bend | $\mathrm{s}_{2} \pi$ | -0.014 |
| $\mathrm{C}-\mathrm{O}$ stretch/ $\mathrm{C}_{\mathrm{CO}}-\mathrm{Os}-\mathrm{H}$ bend | $\mathrm{s}_{3} \delta$ | 0.001 |
| $\mathrm{C}-\mathrm{O}$ stretch/Os-C-O bend | $\mathrm{s}_{3} \epsilon$ | 0.009 |
| Os- $\mathrm{C}_{\text {ring/H }} / \mathrm{C}_{\text {ring }}-\mathrm{Os}-\mathrm{H}$ bend | $\mathrm{s}_{4} \gamma$ | -0.132 |
| Os- $\mathrm{C}_{\text {ring/ }} / \mathrm{C}-\mathrm{C}_{\mathrm{H}}-\mathrm{C}$ bend i.p. | $\mathrm{s}_{4} \phi$ | -0.055 |
| Os- $\mathrm{C}_{\text {ring/ } / \mathrm{H}} / \mathrm{C}-\mathrm{C}_{\mathrm{Me}}-\mathrm{C}$ bend i.p. | $\mathrm{s}_{4} X$ | 0.044 |
| Os-C $\mathrm{Cring} / \mathrm{H}^{\text {/ }}$ / $\mathrm{C}-\mathrm{C}-\mathrm{H}$ i.p. | $s_{4} \eta$ | -0.137 |
| Os-C $\mathrm{C}_{\text {ring } / \mathrm{H}} / \mathrm{C}-\mathrm{C}-\mathrm{Me} \mathrm{i.p}$. | $\mathrm{s}_{4} \varphi$ | -0.275 |
| Os- $\mathrm{C}_{\text {ring/H }} / \mathrm{C}-\mathrm{H}$ bend o.o.p | $\mathrm{s}_{4}{ }^{\kappa}$ | -0.130 |
| Os- $\mathrm{C}_{\text {ring } / \mathrm{Me}} / \mathrm{C}_{\text {ring }}$ - $\mathrm{Os}-\mathrm{HI}$ bend | $\mathrm{s}_{5} \beta$ | 0.047 |
| $\mathrm{Os}-\mathrm{C}_{\text {ring } / \mathrm{Mc}} / \mathrm{C}_{\text {ring }}$ - $\mathrm{Os}-\mathrm{C}_{\text {co }}$ bend | $\mathrm{s}_{5} \gamma$ | 0.004 |
| $\mathrm{Os}-\mathrm{C}_{\text {ring } / \mathrm{Me}} / \mathrm{C}-\mathrm{C}_{\mathrm{H}}-\mathrm{C}$ bend i.p. | $\mathrm{s}_{5} \phi$ | 0.013 |
| $\mathrm{Os}-\mathrm{C}_{\text {ring } / \mathrm{Me}} / \mathrm{C}-\mathrm{C}_{\mathrm{Me}}-\mathrm{C}$ bend i.p. | $\mathrm{s}_{5} \chi$ | -0.039 |

TABLE 6 (continued)

| Force constant type | Definition | Value |
| :---: | :---: | :---: |
| Os $-\mathrm{C}_{\text {ring } / \mathrm{Me}} / \mathrm{C}-\mathrm{C}-\mathrm{H}$ bend i.p. | $\mathrm{s}_{5} \boldsymbol{\eta}$ | 0.0124 |
| Os- $\mathrm{C}_{\text {ring } / \mathrm{Me}} / \mathrm{C}-\mathrm{C}-\mathrm{Me}$ bend i.p. | $\mathrm{S}_{5} \varphi$ | $-0.023$ |
| Os- $\mathrm{C}_{\text {ring } / \mathrm{Me}} / \mathrm{C}-\mathrm{Me}$ bend o.o.p. | $\mathrm{s}_{5} \lambda$ | 0.004 |
| $\mathrm{C}-\mathrm{C}$ stretch/ $\mathrm{C}-\mathrm{C}_{\mathbf{H}}-\mathrm{C}$ bend i.p. | $\mathrm{s}_{6} \phi$ | -0.486 |
| $\mathrm{C}-\mathrm{C}$ stretch/ $\mathrm{C}-\mathrm{C}_{\mathrm{Me}}-\mathrm{C}$ bend i.p. | $\mathrm{s}_{6} \chi$ | 0.319 |
| $\mathrm{C}-\mathrm{C}$ stretch/ $\mathrm{C}-\mathrm{C}-\mathrm{H}$ bend i.p. | $\mathrm{s}_{6} \eta$ | 0.404 |
| $\mathrm{C}-\mathrm{C}$ stretch/C-C-Me bend i,p. | $s_{6} \varphi$ | -0.408 |
| $\mathrm{C}-\mathrm{H}$ stretch/ $\mathrm{C}-\mathrm{C}_{\mathrm{H}}-\mathrm{C}$ bend i.p. | $\mathrm{s}_{7} \phi$ | -1.124 |
| $\mathrm{C}-\mathrm{H}$ stretch/ $\mathrm{C}-\mathrm{C}_{\mathrm{Me}}-\mathrm{C}$ bend i.p. | $\mathrm{s}_{7} \boldsymbol{X}$ | 0.037 |
| $\mathrm{C}-\mathrm{H}$ stretch/ $\mathrm{C}-\mathrm{C}-\mathrm{H}$ bend i.p. | $\mathrm{s}_{7} \eta$ | -0.139 |
| $\mathrm{C}-\mathrm{H}$ stretch/ $\mathrm{C}-\mathrm{C}-\mathrm{Me}$ bend i.p. | $s_{7} \varphi$ | 0.940 |
| $\mathrm{C}-\mathrm{Me}$ stretch/ $\mathrm{C}-\mathrm{C}_{\mathrm{H}}-\mathrm{C}$ bend i.p. | $\mathrm{s}_{8}$ ¢ | $-0.003$ |
| $\mathrm{C}-\mathrm{Me}$ stretch/ $\mathrm{C}-\mathrm{C}_{\mathrm{Me}}-\mathrm{C}$ bend i.p. | $\mathrm{s}_{8} \chi$ | -0.019 |
| $\mathrm{C}-\mathrm{Me}$ stretch/ $\mathrm{C}-\mathrm{C}-\mathrm{H}$ bend i.p. | $\mathrm{s}_{8} \eta$ | -0.007 |
| C-Me stretch/C-C-Me bend i.p. | $\mathrm{s}_{8} \varphi$ | 0.794 |
| Bend / bend interaction |  |  |
| $\mathrm{H}-\mathrm{Os}-\mathrm{H}$ bend/ $\mathrm{C}_{\mathrm{CO}}-\mathrm{Os}-\mathrm{H}$ bend | $\alpha \delta$ | $-0.012$ |
| $\mathrm{H}-\mathrm{Os}-\mathrm{H}$ bend/ $\mathrm{Os}-\mathrm{C}-\mathrm{O}$ bend | $\boldsymbol{\alpha \epsilon}$ | 0.021 |
| $\mathrm{C}_{\text {ring }}-\mathrm{Os}-\mathrm{H}$ bend/ $/ \mathrm{C}_{\text {ring }}-\mathrm{Os}-\mathrm{H}$ bend | $\beta \beta$ | $-0.030$ |
| $\mathrm{C}_{\text {ring }}-\mathrm{Os}-\mathrm{H}$ bend/ $\mathrm{C}_{\text {ring }}$ - $\mathrm{Os}-\mathrm{C}$ bend | $\beta \gamma$ | -0.620 |
| $\mathrm{C}_{\text {ring }}-\mathrm{Os}-\mathrm{H}$ bend $/ \mathrm{C}_{\mathrm{CO}}-\mathrm{Os}-\mathrm{H}$ bend | $\beta \delta$ | 0.035 |
| $\mathrm{C}_{\mathrm{CO}}-\mathrm{Os}-\mathrm{H}$ bend $/ \mathrm{C}_{\mathrm{CO}}-\mathrm{Os}-\mathrm{H}$ bend | $\delta \delta$ | -0.006 |
| $\mathrm{C}_{\mathrm{CO}}-\mathrm{Os}-\mathrm{H}$ bend/ $\mathrm{Os}-\mathrm{C}-\mathrm{O}$ bend | $\boldsymbol{\delta \epsilon}$ | 0.025 |
| $\mathrm{C}-\mathrm{C}_{\mathrm{H}}-\mathrm{C}$ bend i.p. $/ \mathrm{C}-\mathrm{C}_{\mathrm{H}}-\mathrm{C}$ bend i.p. | $\phi \phi$ | -0.345 |
| $\mathrm{C}-\mathrm{C}_{\mathrm{H}}-\mathrm{C}$ bend i.p. $/ \mathrm{C}-\mathrm{C}_{\mathrm{Me}}-\mathrm{C}$ bend i.p. | $\phi \chi$ | 0.501 |
| $\mathrm{C}-\mathrm{C}_{\mathrm{H}}-\mathrm{C}$ bend i.p./C-C-H bend i.p. | $\phi \eta$ | -0.057 |
| $\mathrm{C}-\mathrm{C}_{\mathrm{H}}-\mathrm{C}$ bend i.p. $/ \mathrm{C}-\mathrm{C}-\mathrm{Me}$ bend i.p. | $\phi \varphi$ | -0.019 |
| $\mathrm{C}-\mathrm{C}_{\mathrm{Me}}-\mathrm{C}$ bend i.p. $/ \mathrm{C}-\mathrm{C}_{\mathrm{Me}}-\mathrm{C}$ bend i.p. | $\chi \chi$ | 0.227 |
| $\mathrm{C}-\mathrm{C}_{\mathrm{Me}}-\mathrm{C}$ bend i.p./C-C-H bend i.p. | $\chi \eta$ | -0.168 |
| $\mathrm{C}-\mathrm{C}-\mathrm{H}$ bend i.p./C-C-H bend i.p. | $\eta \eta$ | 0.150 |
| $\mathrm{C}-\mathrm{C}-\mathrm{H}$ bend i.p. $/ \mathrm{C}-\mathrm{C}-\mathrm{Me}$ bend i.p. | $\eta \varphi$ | $-0.063$ |
| $\mathrm{C}-\mathrm{C}_{\mathrm{Me}}-\mathrm{C}$ bend i.p. $/ \mathrm{C}-\mathrm{C}-\mathrm{Me}$ bend i.p. | $\chi \varphi$ | 0.077 |
| $\mathrm{C}-\mathrm{C}-\mathrm{Me}$ bend i.p./C-C-Me bend i.p. | $\varphi \varphi$ | 0.510 |
| $\mathrm{C}-\mathrm{H}$ bend o.o.p./ $\mathrm{C}-\mathrm{H}$ bend o.o.p. | $\boldsymbol{\kappa \kappa}$ | 0.003 |
| $\mathrm{C}-\mathrm{H}$ bend o.o.p. $/ \mathrm{C}-\mathrm{Me}$ o.o.p. | $\kappa \lambda$ | -0.002 |
| $\mathrm{C}-\mathrm{H}$ bend o.o.p. $/ \mathrm{C}-\mathrm{C}$ torsion | $\kappa \tau$ | -0.005 |
| $\mathrm{C}-\mathrm{H}$ bend o.o.p. $/ \mathrm{H}-\mathrm{C}$ Os bend | $\kappa \mu$ | -0.006 |
| C-Me o.o.p./C-Me o.o.p. | $\lambda \lambda$ | -0.034 |
| C-Me o.o.p. $/ \mathrm{C}-\mathrm{C}$ torsion | $\lambda \tau$ | 0.225 |
| $\mathrm{C}-\mathrm{Me}$ o.o.p./ $\mathrm{Me}-\mathrm{C}-\mathrm{Os}$ bend | $\lambda \pi$ | -0.031 |
| $\mathrm{C}-\mathrm{C}$ torsion/ $\mathrm{C}-\mathrm{C}$ torsion (adjacent) | $\tau \tau$ | 0.012 |
| $\mathrm{C}-\mathrm{C}$ torsion/C-C torsion (1 adjacent) | $\tau \tau^{\prime}$ | 0.021 |
| $\mathrm{C}-\mathrm{C}$ torsion/C-C torsion (2 adjacent) | $\tau \tau^{\prime \prime}$ | -0.003 |
| $\mathrm{H}-\mathrm{C}-\mathrm{Os}$ bend/ $\mathrm{H}-\mathrm{C}-\mathrm{Os}$ bend | $\mu \mu$ | 0.099 |
| $\mathrm{Il}-\mathrm{C}-\mathrm{Os}$ bend/ Mc-C-Os bend | $\mu \pi$ | 0.053 |
| $\mathrm{Me}-\mathrm{C}-\mathrm{Os}$ bend/Me-C-Os bend | $\pi \pi$ | 0.009 |

there are only small differences in the force constants of the internal coordinates of the $\mathrm{H}_{2} \mathrm{Os}(\mathrm{CO})$ unit between the PMA and the complete calculation.

Hence, it follows that the point mass approximation in a NCA of a half-sandwich complex with "piano stool" geometry and with a heavy centre atom and other relatively light ligands also yields useful results. Only the force constants of the point mass itself have to be considered critically.

TABLE 7. Observed and calculated wavenumbers for $\left[(\mathrm{mes}) \mathrm{OsH}_{2}(\mathrm{CO})\right]$ and potential energy distribution (PED) (for internal coordinates see Fig. 2)

| Observed $\left(\mathrm{cm}^{-1}\right)$ | $\begin{aligned} & \text { Calculated } \\ & \left(\mathrm{cm}^{-1}\right) \end{aligned}$ | Assignment | PED (\%) ${ }^{\text {a }}$ |
| :---: | :---: | :---: | :---: |
| 3078 | 3078 | $\nu_{s}(\mathrm{C}-\mathrm{H})$ | $96 s_{7}$ |
| 3034 | 3034 | $\nu_{\mathrm{as}}(\mathrm{C}-\mathrm{H})$ | $88 \mathrm{~s}_{7}+8 \mathrm{~s}_{6}$ |
| 2066 | 2066 | $\nu_{s}(\mathrm{Os}-\mathrm{H})$ | $100 s_{1}$ |
| 2062 | 2062 | $\nu_{\text {as }}(\mathrm{Os}-\mathrm{H})$ | 100 s , |
| 1936 | 1936 | $\nu(\mathrm{C}-\mathrm{O})$ | $88 \mathrm{~s}_{3}+12 \mathrm{~s}_{2}$ |
| 1522 | 1522 | $\nu_{\mathrm{as}}(\mathrm{C}-\mathrm{H})$ | $88 \eta+7 \mathrm{~s}_{6}$ |
| 1455 | 1455 | $\nu_{\text {as }}(\mathrm{C}-\mathrm{C})$ | $\begin{aligned} & 46 \mathrm{~s}_{6}+16 \mathrm{~s}_{7}+10 \varphi+9 \mathrm{~s}_{8}+ \\ & 9 \chi+5 \eta \end{aligned}$ |
| - | 1451 | $\delta(\mathrm{C}-\mathrm{C})_{\text {ip }}$ | $80 s_{6}+13 \eta+7 \varphi$ |
| 1299 | 1300 | $\nu_{s}(\mathrm{C}-\mathrm{C})$ | $\begin{aligned} & 36 \chi+14 \phi+14 \varphi+11 \mathrm{~s}_{6}+ \\ & 8 \eta+7 \mathrm{~s}_{7}+6 \mathrm{~s}_{8} \end{aligned}$ |
| - | 1222 | $\delta(\mathrm{C}-\mathrm{H})_{\text {ip }}$ | $75 \eta+25 \mathrm{~s}_{6}$ |
| 1152 | 1153 | $\delta(\mathrm{C}-\mathrm{C})_{\mathrm{ip}}$ | $\begin{aligned} & 48 \mathrm{~s}_{6}+24 \mathrm{~s}_{7}+14 \mathrm{~s}_{8}+6 \varphi+ \\ & 5 \chi \end{aligned}$ |
| 989 | 990 | $\nu_{\mathrm{s}}(\mathrm{C}-\mathrm{C})$ | $34 \mathrm{~s}_{8}+25 \mathrm{~s}_{7}+23 \mathrm{~s}_{6}+8 \chi$ |
| 913 | 913 | $\nu_{\text {as }}(\mathrm{C}-\mathrm{Me})$ | $43 \mathrm{~s}_{8}+39 \mathrm{~s}_{6}+9 \mathrm{~s}_{7}$ |
| 878 | 881 | $\delta(\mathrm{C}-\mathrm{H})_{\text {oop }}$ | $\begin{aligned} & 35 \tau+16 s_{8}+16 \kappa+12 \lambda+ \\ & 8 s_{6}+5 \mu \end{aligned}$ |
| 826 | 827 | $\delta(\mathrm{C}-\mathrm{H})_{\text {oop }}$ | $74 \tau+15 \kappa+8 \mu$ |
| 810 | 809 | $\delta(\mathrm{C}-\mathrm{Os}-\mathrm{II})$ | $53 \delta+26 \epsilon+8 \beta+5 \alpha$ |
| 733 | 730 | $\tau(\mathrm{H}-\mathrm{Os}-\mathrm{H})$ | $878+13 \beta$ |
| 669 | 672 | $\delta(\mathrm{C}-\mathrm{C})_{\text {oop }}$ | $56 \lambda+18 \kappa+8 \mathrm{~s}_{4}+8 \mathrm{~s}_{5}$ |
| 605 | 604 | $\omega$ (H-Os-H) | $40 \alpha+30 \epsilon+9 \beta+6 \lambda$ |
| 570 | 568 | $\nu_{s}(\mathrm{C}-\mathrm{Me})$ | $66 \mathrm{~s}_{8}+16 \mathrm{~s}_{6}+8 \chi$ |
| - | 565 | $\delta(\mathrm{C}-\mathrm{C})_{\text {oop }}$ | $\begin{aligned} & 23 \tau+20 \lambda+7 \kappa+7 \mathrm{~s}_{4}+ \\ & 7 \mathrm{~s}_{5}+6 \mathrm{~s}_{6}+5 \chi \end{aligned}$ |
| 558 | 559 | $\delta(\mathrm{H}-\mathrm{Os}-\mathrm{H})$ | $\begin{aligned} & 32 \epsilon+31 \delta+13 \alpha+5 \lambda+ \\ & 5 \tau \end{aligned}$ |
| 546 | 546 | $\nu\left(\mathrm{Os}-\mathrm{C}_{\mathrm{CO}}\right)$ | $86 s_{2}+12 s_{3}$ |
| 512 | 512 | $\delta(\mathrm{C}-\mathrm{C})_{\text {ip }}$ | $\begin{aligned} & 28 s_{6}+19 \chi+15 s_{7}+11 \varphi+ \\ & 7 \lambda+6 \tau \end{aligned}$ |
| 368 | 367 | $\nu_{\text {as }}$ (Os-ring) | $\begin{aligned} & 28 s_{4}+28 s_{5}+13 \tau+10 \kappa+ \\ & 6 \eta+5 \lambda \end{aligned}$ |
| 329 | 329 | $\nu_{s}$ (Os-ring) | $42 s_{4}+42 s_{5}+9 \mathrm{~K}$ |
| - | 324 | $\delta(\mathrm{C}-\mathrm{Me})_{\text {ip }}$ | $100 \varphi$ |
| 275 | 274 | $\delta(\mathrm{C}-\mathrm{Me})_{\text {ip }}$ | $66 \varphi+21 s_{7}$ |
| 225 | 226 | $\delta(\mathrm{C}-\mathrm{Me})_{\text {oop }}$ | $\begin{aligned} & 36 \tau+18 \pi+13 \kappa+13 s_{4}+ \\ & 13 \mathrm{~s}_{5} \end{aligned}$ |
| 173 | 173 | $\delta(\mathrm{C}-\mathrm{Me})_{\text {oop }}$ | $\begin{aligned} & 23 \tau+18 \mathrm{~s}_{4}+18 \mathrm{~s}_{5}+15 \pi+ \\ & 14 \lambda+11 \kappa \end{aligned}$ |
| 166 | 163 | $\delta$ (ring-Os-H) | $76 \beta+13 \varphi+11 \delta$ |
| 137 | 137 | $\delta$ (ring-Os- $\mathrm{C}_{\mathrm{CO}}$ ) | $\begin{aligned} & 23 \tau+20 \gamma+10 \mu+9 \kappa+ \\ & 7 \mathbf{s}_{4}+7 \mathrm{~s}_{5}+5 \alpha+5 \delta \end{aligned}$ |

${ }^{a}$ PED values below 5\% are omitted.

## Acknowledgements

We gratefully acknowledge support from the Deutsche Forschungsgemeinschaft (SFB 347, Teilprojekt C-2) as well as from the Fonds der Chemischen Industrie. Fruitful collaborations with Dr. U. Wecker and Prof. H. Werner are highly acknowledged. We also thank Dr. B. Warmuth for her gaussian-90 calculations.

## References

1 T. Polzer, U. Posset, C. Engert, V. Deckert and W. Kiefer, in H. Werner, A.G. Griesbeck, W. Adam, G. Bringmann and W. Kiefer (eds.), Selective Reactions of Metal Activated Molecules, Vieweg Verlag, Braunschweig, 1992, p. 225.
2 T. Polzer, A. Ellebracht, W. Kiefer, U. Wecker and H. Werner, J. Organomet. Chem., 438 (1992) 319.

3 F.A. Cotton, Inorg. Chem., 3 (1964) 702.
4 W.A. Herrmann, A. Kiprof, K. Rydal, J. Tremmel, R. Blom,
R. Alberto, J. Brehm, R.W. Albach, H. Bock, B. Solouki, J. Mink, D. Lichtenberger and N. Gruhn, J. Am. Chem. Soc., 113 (1991) 6527.

5 F.T. Delbeke, E.G. Claeys, G.P. van der Kelen and Z. Eeckhaut, J. Organomet. Chem., 25 (1970) 213.

6 D.C. Andrews, G. Davidson and D.A. Duce, J. Organomet. Chem., 101 (1975) 113.
7 D.M. Adams, R.E. Christopher and D.C. Stevens, Inorg. Chem., 14 (1975) 1562.
8 E.M. Bisby, G. Davidson and D.A. Duce, J. Organomet. Chem., 48 (1978) 93.
9 B. Warmuth, Ph.D. thesis, University of Würzburg 1993.
10 M.J. Frisch, M. Head-Gordon, G.W. Trucks, J.B. Foresman, H.B. Schlegel, K. Raghavachari, M. Robb, J.S. Binkley, C. Gonzalez, D.J. Defrees, D.J. Fox, R.A. Whiteside, R. Seeger, C.F. Melius, J. Baker, R.L. Martin, L.R. Kahn, J.J.P. Stewart, S. Topiol and J.A. Pople, gaussian 90, Revision J, Gaussian Inc., Pittsburgh, PA, 1990.

11 S. Kjelstrup, S.J. Cyvin, J. Brunvoll and L. Schäfer, J. Organomet. Chem., 36 (1972) 137.
12 T. Polzer and W. Kiefer, in preparation.
13 A. Ellebracht, diploma thesis, University of Würzburg, 1992.
14 J.H.S. Green, D.J. Harrison and W. Kynaston, Spectrochim. Acta, 27A (1971) 793.
15 C. La Lau and R.G. Snyder, Spectrochim. Acta, 27A (1971) 2073.
16 J. Favrot and M.T. Forel, Can. J. Spectrosc., 21 (1976) 144.
17 J.A. Draeger, Spectrochim. Acta, 41 A (1985) 607.
18 G. Davidson and E.M. Riley, J. Organomet. Chem., 19 (1969) 101.

19 R.S. Armstrong, M.J. Aroney, C.M. Barnes and K.W. Nugent, Appl. Organomet. Chem., 4 (1990) 569.
20 L. Phillips, A.R. Lacey and M.K. Cooper, J. Chem. Soc., Dalton Trans., (1988) 1383.
21 V.T. Aleksanyan, B.V. Lokshin, G.K. Borisov, G.G. Devyatykh, A.S. Smirnov, R.V. Nazarova, J.A. Koningstein and B.F. Gächter, J. Organomet. Chem., 124 (1977) 293.


[^0]:    Correspondence to: Professor W. Kiefer.

    * Dedicated to Professor Helmut Werner on the occasion of his 60th birthday.

[^1]:    ${ }^{\text {a }}$ Values for stretches and their interactions are in mdyn $\AA^{-1}$, for bendings, waggings and torsions and all interactions thereoff in mdyn $\AA \mathrm{rad}^{-2}$ and for interactions of stretches with bendings, waggings and torsions mdyn rad ${ }^{-1}$.

